Лукашевич Р.В., Фоков Г.А.

Научно-производственное унитарное предприятие «ATOMTEX», г. Минск, Республика Беларусь

> ХІІ-е МЕЖДУНАРОДНОЕ СОВЕЩАНИЕ Проблемы прикладной спектрометрии и радиометрии «ППСР — 2011» 10-14 октября 2011

> > г.Санкт-Петербург, Россия

Распределение энергии параллельного потока гамма-излучения 59 кэВ (слева), 166 кэВ (по центру) и 2600 кэВ (справа) в сцинтилляционном детекторе NaI(TI) 40×40 мм. На рисунке представлены симметричные вертикальные сегменты детектора.

Поставленные перед нами задачи:

■исследование положения эффективного центра для торцевой и боковой поверхности сцинтилляционного детектора в зависимости от расстояния до источника;

■исследование положения эффективного центра сцинтилляционного детектора в зависимости от точечного источника и параллельного потока гаммаизлучения;

■исследование влияния геометрических размеров на положение эффективного центра сцинтилляционного детектора.

Рассчеты проводились на основе данных, смоделированных методом Монте-Карло с помощью программного комплекса SNEGMONT (Scattering of Nuclons, Electrons, Gamma by MONTe-Carlo)

▲ язык программирования VISUAL C++6

🔺 смешанная процедура моделирования переноса электронов и позитронов

▲ диалоговый режим ввода исходных заданий

▲ высокое быстродействие
▲ динамические базы данных

▲ многофункциональность (расчёт спектров, двумерных дозовых полей

в областях интереса, функции отклика детекторов)

▲ визуализация процесса расчёта

 Задача: На цилиндр кристалла сбоку падает плоский равномерный моноэнергетический поток гамма- излучения. Необходимо найти распределение энергии внутри кристалла и вычислить эффективный центр.

Распределение энергии потока гамма-излучения с энергией 59,6 кэВ (слева) в сцинтилляционном детекторе NaI(TI) 25×40 мм и 662 кэВ (справа) в сцинтилляционном детекторе NaI(TI) 40×40 мм.

 Исследование положения эффективного центра для торцевой и боковой поверхности сцинтилляционного детектора для точечного источника

Детектор Nal D25x40 мм,

точечный равномерный источник фотонов, L = 1 м

 Исследование положения эффективного центра для торцевой и боковой поверхности сцинтилляционного детектора для точечного источника

Детектор Nal D40x40 мм,

точечный равномерный источник фотонов, L = 1 м

АТОМТЕХ

 Исследование положения эффективного центра для торцевой и боковой поверхности сцинтилляционного детектора для параллельного потока гамма-излучения.

Детектор **Nal D25x40** мм,

равномерный параллельный поток фотонов

 Исследование положения эффективного центра для торцевой и боковой поверхности сцинтилляционного детектора для параллельного потока гамма-излучения.

Детектор Nal D40x40 мм,

равномерный параллельный поток фотонов

 Исследование влияния геометрических размеров сцинтилляционного детектора на положение его эффективного центра

Исследование влияния геометрических размеров сцинтилляционного детектора и расстояния до источника на положение его эффективного центра

Е, кэВ	паралельный поток		L=500	L=250
	D40x160	D40x40	D40x40	D40x40
59,54	4,333	4,346	4,045	3,753
100	5,243	5,231	4,958	4,685
200	10,016	9,956	9,641	9,258
392	15,811	15,673	15,123	14,702
662	17,452	17,227	16,702	16,22
2614	18,795	18,593	18,102	17,544
10000	19,929	19,883	19,424	18,905

Radid MM

 Исследование влияния геометрических размеров сцинтилляционного детектора на положение его эффективного центра

Выводы:

 Предложен оригинальный метод определения эффективного центра сцинтилляционного детектора при падении излучения на боковую поверхность цилиндра кристалла;

 Сделаны расчеты положения эффективного центра сцинтилляционного детектора «популярных» размеров при падении излучения на боковую поверхность цилиндра кристалла;

Было установлено, что необходимо учитывать изменение положения
эффективного центра сцинтилляционного детектора при измерениях боковой поверхностью кристалла детектора;

•Используя программный комплекс SNEGMONT, было установлено, что высота кристалла не влияет на положение эффективного центра детектора при измерениях боковой поверхностью (при одинаковых диаметрах кристалла);

•Полученные данные учитываются при испытаниях, калибровке и поверке серийно выпускаемых блоков детектирования, на основе сцинтилляционных детекторов в НПУП «АТОМТЕХ».

220005, Республика Беларусь, г. Минск, ул. Гикало, 5 тел.: +375-17-292-81-42 тел. / факс: +375-17-292-81-42, 288-29-88

info@atomtex.com

www.atomtex.com